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Signal discrimination without denoising
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ABSTRACT
This article reveals that two previously established tests for autoco-
variance equality between stationary autoregressive moving average
(ARMA) processes can also be used to discriminate between har-
monic signals embedded in noise without the need for any recon-
struction or modeling. A third test is also introduced and used for
the same purpose. An application involving functional magnetic res-
onance imaging (fMRI) as well as an extension involving a general-
ized linear chirp (GLC) process are presented at the end.
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1. Introduction

Consider the process

fXtg
defined by

Xt ¼
Xm
i¼1

Ai sin ðkit þ aiÞ þ Zt t ¼ 0,61,62, ::: (1)

where Ai, ai, and ki are constants for all i ¼ 1, 2, :::,m and fZtg�WNð0, r2Þ. This is a
standard harmonic signal plus noise model. Figure 1 shows two examples of such
a process.
In practice, one is typically interested in extricating the signal from the noise. That is,

the noise is viewed as a contaminating force from which the signal needs to be freed so
that it can be properly understood. A wide variety of techniques exist for such
“denoising” and include moving average filters, exponential smoothing, Savitsky-Golay
smoothing, and Nyquist-Shannon sampling.
In addition to signal extraction, the practitioner is often interested in grouping or

clustering signals into categories based on whether their waveforms are similar or dis-
similar. See, for example, Mezer et al. (2009). Such signal discrimination can be done by
analyzing either covariance structures in the time domain or spectral structures in the
frequency domain. Kullback-Liebler and Chernoff information measures are often
employed. See, Kakizawa, Shumway, and Taniguchi (1998) for a more thor-
ough discussion.
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This article presents three pairwise discrimination tests that do not require any signal
reconstruction or model analysis. Details of these tests are outlined in the next section
while various simulations appear in Sec. 3. Section 4 presents an application involving
functional magnetic resonance imaging and Sec. 5 closes the article with some remarks
and extensions.

2. The tests

There are three signal discrimination tests outlined in this section, all of which are
designed to compare and contrast the autocovariances between two independent, sta-
tionary autoregressive moving average (ARMA) processes. Recall that if
fAtg�ARMAðp, qÞ, then

At�
Xp
i¼1

/iAt�i ¼ �t þ
Xq
j¼1

hj�t�j t ¼ 0,61,62, ::: (2)

where f�tg�WNð0, r2AÞ,/ðzÞ ¼ 1�/1z� � � � �/pz
p and hðzÞ ¼ 1þ h1z þ � � � þ hqzq have

no common factors, and the roots of /ðzÞ all fall outside of the unit circle.
We now wish to apply these tests to harmonic signals embedded in noise. Such a

move is natural since stationary ARMA processes can often be approximately described
by harmonic signal plus noise models and vice versa. For example, in Figure 2, we see
100 observations from processes fAtg and fXtg, where fAtg�ARMAð2, 2Þ with

At�1:72At�1 þ 0:99At�2 ¼ �t�1:37�t�1 þ 0:72�t�2

and fXtg follows (1) with

Xt ¼ 3:57 cos
pt
6
þ p

� �
þ Zt:

Both f�tg and fZtg are iid standard normal. The two paths traced out in the plots are
very similar. For more examples and details of this approximation process, see Sec. 4.1
of Woodward, Gray, and Elliott (2012).
In general, if fXtg follows (1), then its mean and autocovariance functions are given by

EðXtÞ ¼
Xm
i¼1

Ai sin ðkit þ aiÞ and CovðXt,XtþhÞ ¼
�
r2 h ¼ 0
0 h 6¼ 0

,

Figure 1. 150 observations from (left) Xt ¼ sin t� sin ð2tÞ þ Zt with fZtg�iid Nð0, 1Þ and (right) Xt ¼
2 sin ð3tÞ�3 cos ð2tÞ þ Zt with fZtg�iid N(0,4).
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respectively. Observe that since the mean depends on t, fXtg is not stationary (in the
wide sense). However, because on the average the sine waves in question spend as
much time above the time axis as they do below, it will suit our purposes to treat the
process as being mean-zero. Observe also that all signals have the same autocovariance
structure, and so we won’t technically be discriminating between autocovariances but
rather between general wave structures. Thus, if fXtg and fYtg both follow ð1Þ and are
independent of one another, we will be testing

H0 : fXtg and fYtg have the same wave structure vs:
H1 : fXtg and fYtg have different wave structures:

(3)

Put another way, we wish to test whether or not fXtg and fYtg are driven by the same
type of signal.

2.1. Bounded area test

Observe the scatterplot of an arbitrary mean-zero process shown in Figure 3. Typically, one
“connects the dots” for better presentation as shown in Figure 4. The shaded region between
these line segments and the time axis shown in Figure 5 is simply called the bounded area.
If fXtg is a time series observed at times t ¼ 1, 2, :::, n, then the magnitude of its

bounded area is equal to

UX
n ¼

Xn
t¼2

� ðt
t�1

jðXt � Xt�1Þðu� tÞ þ Xtjdu
�
¼

Xn
t¼2

IXt ,

where IXw is the magnitude from t ¼ w�1 to t¼w. Tunno (2015) showed that if two
independent, stationary, mean-zero ARMA processes with finite second moments are
observed over the same period, then a significant difference between their bounded area
magnitudes implies a significant difference between their autocovariance structures.
Now assume that fXtg follows ð1Þ. If we treat fXtg as being mean-zero, then the pro-

cess is stationary, which makes fIXt g stationary as well. Thus, we have

VarðUX
n Þ ¼ Var

�Xn
t¼2

IXt

�
¼ ðn�1ÞcIXð0Þ þ 2

Xn�2

h¼1

ðn� 1� hÞcIX ðhÞ,

Figure 2. 100 observations from (left) At�1:72At�1 þ 0:99At�2 ¼ �t�1:37�t�1 þ 0:72�t�2 and (right)
Xt ¼ 3:57 cos pt

6 þ p
� �þ Zt . Both f�tg and fZtg are iid standard normal.
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where cIX ðhÞ ¼ CovðIXt , IXtþhÞ. If fYtg also follows (1), then UY
n and its associated func-

tionals are defined analogously.
If fXtg and fYtg are independent of one another, then given samples X1,X2, :::,Xn

and Y1,Y2, :::,Yn, a normalized test statistic for (3) is equal to

T1 ¼ UX
n �UY

n �EðUX
n �UY

n Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUX

n � UY
n Þ

p ¼
UX

n �UY
n �



EðUX

n Þ � EðUY
n Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUX

n Þ þ VarðUY
n Þ

p :

Figure 3. A scatterplot of an arbitrary mean-zero time series.

Figure 4. The same scatterplot from Figure 3, but with line segments connecting adjacent points.

Figure 5. The shaded region between the line segments and the time axis is referred to as the
bounded area.
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Under the assumptions that the null hypothesis in (3) implies EðUX
n Þ ¼ EðUY

n Þ and
that (1) is a surrogate for (2), we then have from Tunno (2015) that

T1 ¼H0 UX
n �UY

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUX

n Þ þ VarðUY
n Þ

p !D Nð0, 1Þ: (4)

Thus, the bounded area test of size a tells us to reject the null hypothesis in (3) if the
magnitude of our test statistic in (4) exceeds za=2, where za=2 is the standard normal
critical value with area a=2 to its right. That is, we reject H0 if jT1j>za=2.

2.2. Arc length test

The arc length test is very similar to the bounded area test in that it utilizes a specific
geometric feature of a time series plot. The arc length of time series fXtg observed over
t ¼ 1, 2, :::, n is equal to

VX
n ¼

Xn
t¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðXt�Xt�1Þ2

q
¼

Xn
t¼2

SXt

and is simply the sum of the lengths of the n – 1 line segments connecting adjacent
points on a scatter plot (see Figures 3 and 4). Tunno, Gallagher, and Lund (2012)
showed that if two independent, stationary ARMA processes with finite fourth moments
are observed over the same period, then a significant difference between their arc
lengths implies a significant difference between their autocovariance structures.
Now assume that fXtg follows ð1Þ. If we again treat fXtg as being mean-zero, then

the process is stationary, which makes fSXt g stationary as well. Thus, we have

VarðVX
n Þ ¼ Var

�Xn
t¼2

SXt

�
¼ ðn�1ÞcSXð0Þ þ 2

Xn�2

h¼1

ðn� 1� hÞcSX ðhÞ,

where cSXðhÞ ¼ CovðSXt , SXtþhÞ. If fYtg also follows (1), then VY
n and its associated func-

tionals are defined analogously.
If fXtg and fYtg are independent of one another, then given samples X1,X2, :::,Xn

and Y1,Y2, :::,Yn, a normalized test statistic for (3) is equal to

T2 ¼ VX
n �VY

n �EðVX
n �VY

n Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðVX

n � VY
n Þ

p ¼
VX
n �VY

n �


EðVX

n Þ � EðVY
n Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðVX

n Þ þ VarðVY
n Þ

p :

Under the assumptions that the null hypothesis in (3) implies EðVX
n Þ ¼ EðVY

n Þ and
that (1) is a surrogate for (2), we then have from Tunno, Gallagher, and Lund (2012)
that

T2 ¼H0 VX
n �VY

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðVX

n Þ þ VarðVY
n Þ

p !D Nð0, 1Þ: (5)

Thus, the arc length test of size a tells us to reject the null hypothesis in (3) if the
magnitude of our test statistic in (5) exceeds za=2, where as before za=2 is the standard
normal critical value with area a=2 to its right. That is, we reject H0 if jT2j>za=2.
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2.3. Absolute lag-one test

The absolute lag-one test is similar to both the bounded area and arc length tests in
that the test statistic is once again a function of the lag-one difference Xt�Xt�1.
Specifically, for time series fXtg observed over t ¼ 1, 2, :::, n, we have

WX
n ¼

Xn
t¼2

jXt�Xt�1jk ¼
Xn
t¼2

PX
t ,

where k � 1.
Now assume that fXtg follows ð1Þ. If we again treat fXtg as being mean-zero, then

the process is stationary, which makes fPX
t g stationary as well. Thus, we have

VarðWX
n Þ ¼ Var

�Xn
t¼2

PX
t

�
¼ ðn�1ÞcPX ð0Þ þ 2

Xn�2

h¼1

ðn� 1� hÞcPX ðhÞ,

where cPX ðhÞ ¼ CovðPX
t ,P

X
tþhÞ. If fYtg also follows (1), then WY

n and its associated
functionals are defined analogously.
If fXtg and fYtg are independent of one another, then given samples X1,X2, :::,Xn

and Y1,Y2, :::,Yn, a normalized test statistic for (3) is equal to

T3 ¼ WX
n�WY

n�EðWX
n�WY

n Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðWX

n �WY
n Þ

p ¼
WX

n �WY
n �



EðWX

n Þ � EðWY
n Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðWX

n Þ þ VarðWY
n Þ

p :

Under the assumptions that the null hypothesis in (3) implies EðWX
n Þ ¼ EðWY

n Þ and that
(1) is a surrogate for (2), we then have from Theorem 2.1 below that

T3 ¼H0 WX
n�WY

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðWX

n Þ þ VarðWY
n Þ

p !D Nð0, 1Þ: (6)

Thus, the absolute lag-one test of size a tells us to reject the null hypothesis in (3) if
the magnitude of our test statistic in (6) exceeds za=2, where as before za=2 is the stand-
ard normal critical value with area a=2 to its right. That is, we reject H0 if jT3j>za=2.
Note that while the mean-zero assumption is necessary for the bounded area test to

be meaningful, the arc length and absolute lag-one tests can be run for any constant
mean. That is, if (1) happened to have an intercept term, we would subtract it off from
all observations first before running the bounded area test, but such a step would be
unnecessary for both the arc length and absolute lag-one tests. Observe also that in
practice, the variances in the denominators of T1, T2, and T3 will be unknown, but as
long as they are replaced with consistent estimators, all three tests are unaffected.

Theorem 2.1. Let fXtg and fYtg each follow model (2) and be independent of one
another. Then, under the assumption of the null hypothesis in (3), the test statistic in (6)
converges in distribution to the standard normal. That is, T3!D Nð0, 1Þ when H0 is true.

Proof: We will use Corollary 1 of Theorem 1 from Wu (2002). First, assume that fXtg
follows (2), in which case fXtg is a causal linear process. That is,

Xt ¼
X1
i¼0

wi�t�i

6 F. TUNNO AND M. PERRY



where the wi’s are absolutely summable. Furthermore, pick some k � 1 and then assume
that EðXs

tÞ<1, where s is the smallest integer greater than or equal to 2k
(i.e., s ¼ d2ke).
Now, consider the following objects connected to sample X1,X2, :::,Xn:

A. Xn ¼
P1

i¼0 wi�n�i

B. Xn,� ¼ P1
i¼n wi�n�i

C. PX
n ¼ jXn�Xn�1jk

D. PX
n,� ¼ jXn,��Xn�1,�jk

E. KðXn�1,XnÞ ¼ PX
n� EðPX

n Þ
F. KðXn�1,�,Xn,�Þ ¼ PX

n,�� EðPX
n,�Þ

Observe that

E


KðXn�1,�,Xn,�Þ

�2
� EðPX

n,�Þ2 � v EðXn,�Þ2

for some v> 0, since jXn,��Xn�1,�j<1. If jj � jj denotes the L2-norm, it follows that

X1
n¼2

jjKðXn�1,�,Xn,�Þjjffiffiffi
n

p � v1=2
X1
n¼2

jjXn,�jjffiffiffi
n

p

¼ v1=2
X1
n¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

�X1
i¼n

wi�n�i

�2

=n

s

� v1=2
X1
n¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

�X1
i¼n

jwij
ffiffiffi
n

p �2

=n

s

¼ v1=2
X1
n¼2

X1
i¼n

jwij<1,

since for any causal ARMA process, we have jwkj � Crk for some C> 0 and r 2 ð0, 1Þ.
Then, by Corollary 1 of Theorem 1 from Wu (2002), we have

LXK ¼ 1ffiffiffi
n

p
Xn
t¼2

KðXt�1,XtÞ ¼ WX
n�EðWX

n Þffiffiffi
n

p !D Nð0, r2KÞ,

where r2K ¼ limn!1 VarðLXKÞ. An analogous result holds for fYtg. Thus, we have

LXK�LYKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðLXK � LYKÞ

p ¼H0 WX
n�WY

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðWX

n Þ þ VarðWY
n Þ

p !D Nð0, 1Þ

by Slutsky’s theorem and the independence of fXtg and fYtg. w

In practice, it is probably best to choose a k value for the absolute lag-one test such
that k 2 ½1, 2�. In Theorem 2.1 above, when k is larger than 2, you are forced to assume
that your process must have finite moments of order more than four, which is not
always realistic. The simulations in the next section also reveal that as k increases
beyond 2, the ability of WX

n or WY
n to accurately assess the influence of lag-one differen-

ces becomes diminished.
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3. Simulations

This section compares the type I error and power of the bounded area, arc length, and abso-
lute lag-one tests for testing (3) at level a ¼ 0:05. In all figures, these tests will be abbreviated
as AR, AL, and AB, respectively. For each figure, series of length n¼ 1, 000 were generated
while 10,000 independent simulations were conducted to estimate the error and power val-
ues. fXtg and fYtg are independent of each other and both follow (1). ZX

t and ZY
t denote the

error terms for fXtg and fYtg, respectively, and are i.i.d. standard normal unless stated
otherwise. The normality of the errors make process moments of all orders finite.
This section is henceforth divided up into subsections that correspond to different k-

values for the absolute lag-one test. For each of these k-values, the following four signal
scenarios will be explored:

3.1. k5 1

Figures 6–9 correspond to scenarios (S1) through (S4), respectively. In the first three
scenarios, all three tests have low error and increase power as A deviates from zero,
especially the bounded area test. In the fourth one, all three tests have low error and
increase power as r deviates from two.

3.2. k5 2

Although not shown here, the simulation results for scenarios (S1) through (S4) when
k¼ 2 are indistinguishable from those when k¼ 1.

3.3. k5 4

Figures 10–13 correspond to scenarios (S1) through (S4), respectively. In scenarios (S1)
through (S3), increasing k to 4 causes the absolute lag-one test to lose some of its earlier power.

3.4. k5 6

Although not shown here, the simulation results for scenarios (S1) through (S4) reveal
that the absolute lag-one test loses even more power in the first three scenarios when k
increases to 6.

Error Power

ðS1Þ Xt ¼ A sin t þ ZXt
Yt ¼ A sin t þ ZYt
�2 � A � 2

Xt ¼ ZXt
Yt ¼ A sin t þ ZYt
�2 � A � 2

ðS2Þ Xt ¼ sin t þ A cos t þ ZXt
Yt ¼ sin t þ A cos t þ ZYt

�2 � A � 2

Xt ¼ sin t þ ZXt
Yt ¼ sin t þ A cos t þ ZYt

�2 � A � 2

ðS3Þ Xt ¼ sin ðt þ AÞ þ cos t þ ZXt
Yt ¼ sin ðt þ AÞ þ cos t þ ZYt

�2 � A � 2

Xt ¼ sin t þ cos t þ ZXt
Yt ¼ sin ðt þ AÞ þ cos t þ ZYt

�2 � A � 2

ðS4Þ Xt ¼ sin t þ ZXt
Yt ¼ sin t þ ZYt

fZXt g�iid Nð0,r2Þ fZYt g�iid Nð0, r2Þ
1 � r � 3

Xt ¼ sin t þ ZXt
Yt ¼ sin t þ ZYt

fZXt g�iid Nð0, 4Þ fZYt g�iid Nð0,r2Þ
1 � r � 3

8 F. TUNNO AND M. PERRY



3.5. k5 9

Figures 14–17 correspond to scenarios (S1) through (S4), respectively. In all four scen-
arios, a k-value of 9 leaves the absolute lag-one test with very little power.

Figure 6. Error (left) and power (right) for scenario (S1) when k¼ 1.

Figure 7. Error (left) and power (right) for scenario (S2) when k¼ 1.

Figure 8. Error (left) and power (right) for scenario (S3) when k¼ 1.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 9



4. Application

Signal discrimination has a wide variety of applications in fields ranging from telecom-
munications to psychology to quality control. One particularly interesting application

Figure 9. Error (left) and power (right) for scenario (S4) when k¼ 1.

Figure 10. Error (left) and power (right) for scenario (S1) when k¼ 4.

Figure 11. Error (left) and power (right) for scenario (S2) when k¼ 4.

10 F. TUNNO AND M. PERRY



comes from military intelligence and involves monitoring seismic activity in countries
thought to be engaged in underground nuclear testing. The waveform is analyzed to see
if it is truly nuclear in nature or simply the result of an earthquake or mining explosion.
See Shumway (2003) and Kakizawa, Shumway, and Taniguchi (1998).

Figure 12. Error (left) and power (right) for scenario (S3) when k¼ 4.

Figure 13. Error (left) and power (right) for scenario (S4) when k¼ 4.

Figure 14. Error (left) and power (right) for scenario (S1) when k¼ 9.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 11



Another important application involves functional magnetic resonance imaging
(fMRI). Figure 18 shows eight realizations of blood oxygenation-level dependent
(BOLD) signal intensities corresponding to various locations in the brain. Cortex 1 and
Cortex 2 correspond, respectively, to the contralateral and ipsilateral primary

Figure 15. Error (left) and power (right) for scenario (S2) when k¼ 9.

Figure 16. Error (left) and power (right) for scenario (S3) when k¼ 9.

Figure 17. Error (left) and power (right) for scenario (S4) when k¼ 9.

12 F. TUNNO AND M. PERRY



somatosensory cortex. Cortex 3 and Cortex 4 correspond, respectively, to the contralat-
eral and ipsilateral secondary somatosensory cortex. Thalamus 1 and Thalamus 2 corres-
pond, respectively, to the contralateral and ipsilateral thalamus. Cerebellum 1 and
Cerebellum 2 correspond, respectively, to the contralateral and ipsilateral cerebellum.
Each signal is the average of individual signals for five different subjects, all of which

are in phase. Each subject was given periodic brushing on the hand. Specifically, the
stimulus was applied for 32 seconds and then stopped for 32 seconds, which makes
each signal period 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds, which makes the sample size n¼ 128.
Table 1 shows the magnitudes of test statistic T1 from (4) when the bounded area

test is applied pairwise to all eight signals. Table 2 shows the magnitudes of test statistic
T2 from (5) when the arc length test is applied pairwise to all eight signals. Table 3
shows the magnitudes of test statistic T3 from (6) when the absolute lag-one test with
k¼ 2 is applied pairwise to all eight signals.

Figure 18. Eight realizations of blood oxygenation-level dependent (BOLD) signal intensities corre-
sponding to various locations in the brain.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 13



If our significance level is a ¼ 0:05=28 (Bonferroni), then we reject the null hypoth-
esis of equal wave structures if jT1j, jT2j, or jT3j exceeds zð0:05=28Þ=2 ¼ 3:124, depending
on which test we use. All three tests suggest, for example, that Cortex 1 (CO1) and
Thalamus 2 (TH2) have different waveforms. All three tests also suggest that Cortex 2
(CO2) and Cortex 3 (CO3) have similar waveforms. Figure 19 gives clear visual confirm-
ation of these two conclusions.
The three tests do not always agree, however. For example, the bounded area test

suggests that Thalamus 2 (TH2) and Cerebellum 2 (CE2) have different waveforms
while both the the arc length and absolute lag-one tests conclude that they are simi-
lar. Conversely, the bounded area test suggests that Thalamus 1 (TH1) and Cortex 4
(CO4) have similar waveforms while both the arc length and absolute lag-one tests
conclude that they are different. Figure 20 seems to give more credence to the con-
clusions of the bounded area test. This is not particularly surprising since the simu-
lations in the previous section reveal the bounded area test to be more likely than
the other two tests to reject a false null hypothesis and hence less likely to
accept one.

Table 1. The magnitudes of test statistic T1 when the bounded area test is applied pairwise to all
eight signals.

CO1 CO2 CO3 CO4 TH1 TH2 CE1 CE2
CO1 0 6.117 4.823 7.599 6.978 11.580 8.340 5.524
CO2 6.117 0 1.321 2.097 1.180 5.260 3.133 0.265
CO3 4.823 1.321 0 3.268 2.424 6.687 4.233 1.369
CO4 7.599 2.097 3.268 0 0.936 2.072 1.058 1.537
TH1 6.978 1.180 2.424 0.936 0 3.477 1.993 0.735
TH2 11.580 5.260 6.687 2.072 3.477 0 0.591 3.701
CE1 8.340 3.133 4.233 1.058 1.993 0.591 0 2.461
CE2 5.524 0.265 1.369 1.537 0.735 3.701 2.461 0

Table 2. The magnitudes of test statistic T2 when the arc length test is applied pairwise to all
eight signals.

CO1 CO2 CO3 CO4 TH1 TH2 CE1 CE2
CO1 0 3.874 2.516 4.146 0.731 4.288 1.169 3.812
CO2 3.874 0 1.306 1.127 2.876 0.398 2.475 0.242
CO3 2.516 1.306 0 2.193 1.602 1.705 1.198 1.468
CO4 4.146 1.127 2.193 0 3.429 0.796 3.117 0.880
TH1 0.731 2.876 1.602 3.429 0 3.266 0.395 2.925
TH2 4.288 0.398 1.705 0.796 3.266 0 2.866 0.134
CE1 1.169 2.475 1.198 3.117 0.395 2.866 0 2.555
CE2 3.812 0.242 1.468 0.880 2.925 0.134 2.555 0

Table 3. The magnitudes of test statistic T3 when the absolute lag-one test with k¼ 2 is applied
pairwise to all eight signals.

CO1 CO2 CO3 CO4 TH1 TH2 CE1 CE2
CO1 0 3.839 2.485 4.101 0.706 4.241 1.150 3.756
CO2 3.839 0 1.316 1.114 2.888 0.386 2.479 0.225
CO3 2.485 1.316 0 2.187 1.608 1.704 1.195 1.459
CO4 4.101 1.114 2.187 0 3.421 0.793 3.104 0.881
TH1 0.706 2.888 1.608 3.421 0 3.269 0.403 2.914
TH2 4.241 0.386 1.704 0.793 3.269 0 2.861 0.139
CE1 1.150 2.479 1.195 3.104 0.403 2.861 0 2.538
CE2 3.756 0.225 1.459 0.881 2.914 0.139 2.538 0

14 F. TUNNO AND M. PERRY



For more information on the data set used in this section, see Chapter 1 of Shumway
and Stoffer (2006). To access the raw data itself, go to http://www.stat.pitt.edu/stoffer/
tsa2. To see a nice example of how an in-depth fMRI study can reveal correlations
between tactile sensation and the brain, see Ackerly et al. (2012).

5. Closing remarks and extensions

This article reveals the bounded area, arc length, and absolute lag-one tests to be effect-
ive at signal discrimination, especially the bounded area test. Overall, it is more power-
ful and has slightly lower error, with the exception of certain cases involving signal
scenario ðS4Þ. Since none of these tests require any denoising, it is natural at this point
to ask whether any smoothing or noise reduction would actually augment the results
even more.
Figures 21–24 repeat the same simulations as those in Figures 6–9, respectively, but

this time a Savitzky-Golay filter is applied to the data first. Specifically, Xt gets replaced
with

�3Xt�2 þ 12Xt�1 þ 17Xt þ 12Xtþ1�3Xtþ2

35
t ¼ 1, 2, :::, n,

Figure 19. (Left) Superimposed waveforms for Cortex 1 (CO1) and Thalamus 2 (TH2). (Right)
Superimposed waveforms for Cortex 2 (CO2) and Cortex 3 (CO3).

Figure 20. (Left) Superimposed waveforms for Thalamus 2 (TH2) and Cerebellum 2 (CE2). (Right)
Superimposed waveforms for Thalamus 1 (TH1) and Cortex 4 (CO4).
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Figure 21. Error (left) and power (right) for scenario (S1) when k¼ 1 using a Savitzky-Golay filter.
Compare to Figure 6.

Figure 22. Error (left) and power (right) for scenario (S2) when k¼ 1 using a Savitzky-Golay filter.
Compare to Figure 7.

Figure 23. Error (left) and power (right) for scenario (S3) when k¼ 1 using a Savitzky-Golay filter.
Compare to Figure 8.
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where we define X�1 and X0 as X1 and Xnþ1 and Xnþ2 as Xn. The filter is applied to Yt

in an analogous fashion. See Savitzky and Golay (1964).
All four figures reveal that the Savitzky-Golay filter helps improve the performance of

both the arc length and absolute lag-one tests. The error of these two tests decreases
slightly while the power either increases or stays the same. Interestingly, the bounded
area test is completely unaffected one way or the other by the filter. All three tests now
behave virtually the same. To get some insight into why this may be the case, we define
the following objects:

T1, n, b ¼ num: of T1 before filter T1, d, b ¼ den: of T1 before filter
T1, n, a ¼ num: of T1 after filter T1, d, a ¼ den: of T1 after filter
T2, n, b ¼ num: of T2 before filter T2, d, b ¼ den: of T2 before filter
T2, n, a ¼ num: of T2 after filter T2, d, a ¼ den: of T2 after filter
T3, n, b ¼ num: of T3 before filter T3, d, b ¼ den: of T3 before filter
T3, n, a ¼ num: of T3 after filter T3, d, a ¼ den: of T3 after filter

ðnum: ¼ numeratorÞ ðden: ¼ denominatorÞ
Table 4 contains entries equaling the number of times (out of 5,000) both the numer-

ator and denominator of our three test statistics increased as a result of denoising. The
power version of signal scenario (S1) was employed for values A 2 f61,61:5,62g,
where n¼ 1,000. The value k¼ 2 was used for the absolute lag-one test statistic. Clearly,
smoothing significantly benefited both the arc length (T2) and absolute lag-one (T3) test
statistics since their denominators (i.e., the variability between the two independent
processes) decreased 100% of the time.
The next part of this section presents an extension involving a continuous uniform

random variable. It is well known that if we replace the ai’s with uniform random varia-
bles distributed over the interval ½0, 2p� in (1), then the resulting process is no longer
approximately mean-zero stationary, but exactly so. Specifically, if
U1,U2, :::,Um�iid Uniform½0, 2p�, then

Xt ¼
Xm
i¼1

Ai sin ðkit þ UiÞ þ Zt t ¼ 0,61,62, :::

Figure 24. Error (left) and power (right) for scenario (S4) when k¼ 1 using a Savitzky-Golay filter.
Compare to Figure 9.
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defines a process such that EðXtÞ ¼ 0 and

CovðXt,XtþhÞ ¼
1
2

Xm
i¼1

A2
i þ r2 h ¼ 0

1
2

Xm
i¼1

A2
i cos ðkihÞ h 6¼ 0

:

8>>><
>>>:

For more details, see Sec. 4.1 of Woodward, Gray, and Elliott (2012).
If we tweak the model yet again to become

Xt ¼
Xm
i¼1

Ai cos ðkit2 þ bit þ UiÞ þ Zt t ¼ 0,61,62, :::,

where the bi’s are constants for all i ¼ 1, 2, :::,m, we have what is called a generalized
linear chirp (GLC) process. This is also mean-zero stationary and gets its name from
the fact that the instantaneous frequency changes linearly in time. Linear chirps have
been used extensively to model a wide variety of physical signals such as radar, sonar,
and whale clicks. See Robertson, Gray, and Woodward (2010).
For simulation purposes, we will force the uniform random variables in the above

GLC process to become stochastic and vary in time, and thus fXtg and fYtg will be
defined as follows:

Xt ¼
Xm
i¼1

Ai cos ðkit2 þ bit þ UX
i, tÞ þ ZX

t

Yt ¼
Xm
i¼1

Ai cos ðkit2 þ bit þ UY
i, tÞ þ ZY

t

We will also assume that the uniform random variables are uncorrelated with respect
to time.
Figures 25–27 reveal the error and power of the bounded area, arc length, and abso-

lute lag-one tests with k¼ 1 for signal scenarios ðS5Þ through ðS7Þ, respectively. These
new scenarios involve linear chirps and are outlined below. In scenarios ðS5Þ and ðS6Þ,
all three tests have low error and increase power as A deviates from zero, with the
bounded area test having a slight power advantage. In scenario ðS7Þ, all three tests have
low error and increase power as r deviates from two, with the bounded area test once
again having a slight power advantage.

Table 4. The number of times (out of 5,000) both the numerator and denominator of our three test
statistics increased as a result of denoising for signal scenario (S1) with A 2 f61,61:5,62g, k¼ 2
and n¼ 1,000.

–2 –1.5 –1 1 1.5 2

T1, n, b�T1, n, a 3889 4544 4295 4233 4554 3898
T1, d, b�T1, d, a 668 1589 2637 2668 1591 737
T2, n, b�T2, n, a 4998 4928 4302 4306 4927 4994
T2, d, b�T2, d, a 0 0 0 0 0 0
T3, n, b�T3, n, a 139 774 1592 1612 729 153
T3, d, b�T3, d, a 0 0 0 0 0 0
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We now conclude this article with a few remarks on how to generalize our signal dis-
crimination tests into ones that can handle multiple comparisons and not just pairwise
ones. Specifically, we recommend the use of clustering to accomplish this goal. There is
already precedent for using arc length to cluster financial time series - see
Wickramarachchi and Tunno (2015).

Figure 25. Error (left) and power (right) for scenario (S5) when k¼ 1.

Figure 26. Error (left) and power (right) for scenario (S6) when k¼ 1.

Error Power

ðS5Þ Xt ¼ A cos ðt2 þ t þ UX
1, tÞ þ ZXt

Yt ¼ A cos ðt2 þ t þ UY
1, tÞ þ ZYt

�2 � A � 2

Xt ¼ ZXt
Yt ¼ A cos ðt2 þ t þ UY

1, tÞ þ ZYt
�2 � A � 2

ðS6Þ Xt ¼ cos ðt2 þ t þ UX
1, tÞ

þA sin ðt2 þ t þ UX
2, tÞ þ ZXt

Yt ¼ cos ðt2 þ t þ UY
1, tÞ

þA sin ðt2 þ t þ UY
2, tÞ þ ZYt

�2 � A � 2

Xt ¼ cos ðt2 þ t þ UX
1, tÞ þ ZXt

Yt ¼ cos ðt2 þ t þ UY
1, tÞ

þA sin ðt2 þ t þ UY
2, tÞ þ ZYt

�2 � A � 2

ðS7Þ Xt ¼ cos ðt2 þ t þ UX
1, tÞ þ ZXt

Yt ¼ cos ðt2 þ t þ UY
1, tÞ þ ZYt

fZXt g�iid Nð0,r2Þ
fZYt g�iid Nð0,r2Þ

1 � r � 3

Xt ¼ cos ðt2 þ t þ UX
1, tÞ þ ZXt

Yt ¼ cos ðt2 þ t þ UY
1, tÞ þ ZYt

fZXt g�iid Nð0, 4Þ
fZYt g�iid Nð0,r2Þ

1 � r � 3
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To see an example of how this process might work, let’s assume that there is a collec-
tion of various harmonic signals following model (1) and that we have calculated the
bounded area for each of them. Using the k-meansþþ clustering technique in conjunc-
tion with the bounded area metric, these signals can be partitioned into groups such
that those within the same group have similar structures while those from different
groups have dissimilar structures.
If there is reason to doubt that the clustering process has properly classified two par-

ticular signals as being either similar or dissimilar, then the pairwise bounded area test
presented in this article can be invoked as a “post hoc” measure (not unlike how a
Tukey test can help flesh out the results of an ANOVA test). If, on the other hand, the
clustering seems appropriate, then a pairwise test can be avoided altogether. For a nice
survey on recent time series clustering methods, see Aghabozorgi, Shirkhorshidi, and
Wah (2015).
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