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We present an arc length test that compares the conditional volatility structures
between independent, stationary GARCH processes. A wide variety of simula-
tions are conducted that reveal the power and error of this test to be reasonable
and robust with some exceptions. An application involving the daily returns from
four major penny cryptocurrencies is presented as well. The years 2020 and 2021
are considered, but since the daily closing prices in 2021 behave very differently
from those in 2020, the two years are treated separately.

1. Introduction

The concept of autoregressive conditional heteroscedastic (ARCH) processes was
introduced in [Engle 1982]. Specifically, if {ϵt } ∼ ARCH(p), then

ϵt = σt Z t , t ∈ Z,

where {Z t } ∼ IID(0, 1) and

σ 2
t = α0 +

p∑
i=1

αiϵ
2
t−i ,

with α0, αp > 0 and α1, . . . , αp−1 ≥ 0. It then follows that E(ϵt) = 0 and

Cov(ϵ2
t , ϵ2

t+h) = Cov(σ 2
t , σ 2

t+h) for all h ∈ Z.

Furthermore, if Et = σ(ϵt , ϵt−1, . . . ), then Var(ϵt |Et−1) = σ 2
t . In the special case

where
∑p

i=1 αi < 1, there exists a stationary and causal solution to the ARCH
difference equations:

Cov(ϵt , ϵt+h) =

{
α0/

(
1 −

∑p
i=1 αi

)
, h = 0,

0, h ̸= 0.

See Appendix A for proofs.
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The concept of generalized autoregressive conditional heteroscedastic (GARCH)
processes was introduced in [Bollerslev 1986]. Specifically, if {ϵt }∼GARCH(p, q),
then

ϵt = σt Z t , t ∈ Z,

where {Z t } ∼ IID(0, 1) and

σ 2
t = α0 +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

β jσ
2
t− j ,

with α0, αp, βq > 0 and α1, . . . , αp−1, β1, . . . , βq−1 ≥ 0. It then follows that
E(ϵt) = 0 and

Cov(ϵ2
t , ϵ2

t+h) = Cov(σ 2
t , σ 2

t+h) for all h ∈ Z.

Furthermore, if Ft = σ(ϵt , σt , ϵt−1, σt−1, . . . ), then Var(ϵt |Ft−1) = σ 2
t . In the

special case where
∑p

i=1 αi +
∑q

j=1 β j < 1, there exists a stationary and causal
solution to the GARCH difference equations:

Cov(ϵt , ϵt+h) =

{
α0/

(
1 −

∑p
i=1 αi −

∑q
j=1 β j

)
, h = 0,

0, h ̸= 0.

See Appendix B for proofs.
This article is concerned with comparing the conditional volatility (CV) structures

among GARCH processes. Specifically, if {ϵt,A} and {ϵt,B} are independent, station-
ary GARCH processes with X t := ϵ2

t,A and Yt := ϵ2
t,B , then comparing the dynamics

between CV series {σ 2
t,A} and {σ 2

t,B} is equivalent to testing

H0 : Cov(X t , X t+h) = Cov(Yt , Yt+h) for all h
vs.

H1 : Cov(X t , X t+h) ̸= Cov(Yt , Yt+h) for at least one h.

Since {X t } and {Yt } are also independent and stationary, then the above test will
henceforward be reframed as

H0 : γX (h) = γY (h) for all h
vs.

H1 : γX (h) ̸= γY (h) for at least one h.
(1)

To understand how (1) will be run, the concept of “arc length” for discrete-valued
time series is outlined in the next section. See Appendix C for some relevant
remarks about invertibility.

Comparing the dynamics between independent, stationary time series is nothing
new. Coates and Diggle [1986] compare the spectral densities of two series to
test for autocovariance equality. This method relies upon the fact that two short
memory stationary autocovariance functions are equivalent if and only if the spectral
densities agree at all frequencies (except on a set of Lebesgue measure zero).
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In the time domain, [Lund et al. 2009] examine differences between the sample
autocovariances to make equality conclusions. They devise an asymptotic distri-
bution for a quadratic form of these differences and also prove a chi-squared limit
law for the test statistic using Bartlett’s asymptotic limit formula; see Chapter 7 of
[Brockwell and Davis 1991].

Jin and Wang [2016] present an order selection test for the equality of autocovari-
ances with the ability to detect autocorrelation differences beyond a fixed lag, some-
thing not accomplished by the otherwise powerful time domain test of [Lund et al.
2009]. Cirkovic and Fisher [2021] extend this time domain test to cover dependent
time series and utilize a bootstrapped statistic to automatically select the test order.

2. Arc length

The scatterplot of an arbitrary time series is shown in Figure 1, left. Typically, one
“connects the dots” for better presentation as shown in Figure 1, right. The sum of
the lengths of these line segments is called the arc length. Specifically, if {Wt } is a
discrete-valued time series observed at times t = 1, 2, . . . , n, then its arc length is

U W
n =

n∑
t=2

√
1 + (Wt − Wt−1)

2
=

n∑
t=2

SW
t .

The authors of [Tunno et al. 2012] showed that if two independent, stationary
ARMA processes with finite fourth moments are observed over the same period,
then a significant difference between their arc lengths implies a significant difference
between their autocovariance structures. The authors of [Wickramarachchi et al.
2015] proved a Gaussian functional central limit theorem for sample arc lengths
requiring only a finite second moment. Tunno and Perry [2022] showed that if two
independent, mean-zero signal-plus-noise processes are observed over the same
period, then a significant difference between their arc length magnitudes implies a
significant difference between their underlying structures.

time
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Figure 1. Left: arbitrary time series. Right: connecting the dots.
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Arc length test. Let {ϵt,A} and {ϵt,B} be independent, stationary GARCH processes
with X t :=ϵ2

t,A and Yt :=ϵ2
t,B . Now suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn

are samples from {X t } and {Yt }, respectively. Since {X t } and {Yt } are stationary,
then so are {SX

t } and {SY
t }, in which case

Var(U X
n ) = Var

( n∑
t=2

SX
t

)
= (n − 1)γSX (0) + 2

n−2∑
h=1

(n − 1 − h)γSX (h),

Var(U Y
n ) = Var

( n∑
t=2

SY
t

)
= (n − 1)γSY (0) + 2

n−2∑
h=1

(n − 1 − h)γSY (h).

Hence, a normalized test statistic for (1) is given by

T =
U X

n − U Y
n − E(U X

n − U Y
n )√

Var(U X
n − U Y

n )
=

U X
n − U Y

n − (E(U X
n ) − E(U Y

n ))√
Var(U X

n ) + Var(U Y
n )

.

Under the assumption that the null hypothesis implies E(U X
n ) = E(U Y

n ), we then
have from [Tunno et al. 2012] that

T
H0
=

U X
n − U Y

n√
Var(U X

n ) + Var(U Y
n )

D
−→ N(0, 1). (2)

Thus, the arc length test of size α tells us to reject the null hypothesis if |T | > zα/2,
where zα/2 is the standard normal critical value with area α/2 to its right.

3. Simulations

This section compares the type I error and power of arc length for testing (1) at
significance level α = 0.05. For each figure, series of length n = 1, 000 were
generated while 10, 000 independent simulations were conducted to estimate the
error and power values. The Z t ’s are i.i.d. standard normal.

In practice, γS(h) is unknown and so the variances in (2) have been replaced
with consistent estimators of the form

V̂ar
( n∑

t=2

St

)
= (n − 1)γ̂S(0) + 2

⌊ 3√n⌋∑
h=1

(n − 1 − h)γ̂S(h). (3)

The estimator

γ̂S(h) =
1

n−1

n−h∑
t=2

(St − S)(St+h − S), 0 ≤ h ≤ n − 2,

is nonnegative definite with

S =
1

n−1

n∑
t=2

St .

The sum in (3) is truncated at ⌊ 3
√

n⌋ = 10 to avoid any bias associated with large
lags. The authors of [Berkes et al. 2009] discuss this and other truncation schemes.
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k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5.59 5.16 5.75 5.30 4.79 4.06 3.69 3.25 2.87

Table 1. Percentage type I error with αA = αB = k.

αB αA = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5.78 17.81 58.30 90.79 97.89 97.45 94.86 90.71 84.99
0.5 97.98 91.60 62.37 20.52 4.40 18.18 46.85 69.13 73.87
0.9 84.93 84.28 83.27 80.69 74.90 54.67 27.31 8.01 2.64

Table 2. Percentage power with stated values of αA and αB .

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5.47 5.12 5.50 4.67 4.70 4.32 3.79 3.54

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5.62 5.43 5.51 4.64 4.57 4.25 3.37 2.89

Table 3. Percentage type I error with αA = αB = 0.1 and α′

A = α′

B = k (top),
and α′

A = α′

B = 0.1 and αA = αB = k (bottom).

α′

B α′

A = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 5.40 31.57 82.15 97.03 97.52 95.68 91.74 85.62
0.45 97.77 89.14 46.77 9.00 7.95 33.30 61.29 72.34
0.8 85.45 84.69 83.27 77.95 62.65 31.98 10.19 3.58

Table 4. Percentage power with αA = αB = 0.1 and stated values of α′

A and α′

B .

ARCH(1). Let {ϵt,A} and {ϵt,B} be independent, stationary ARCH(1) processes,
with

σ 2
t,A = 1 + αAϵ2

t−1,A and σ 2
t,B = 1 + αBϵ2

t−1,B .

Tables 1–2 show type I error and power values for this scenario when testing (1).

ARCH(2). Let {ϵt,A} and {ϵt,B} be independent, stationary ARCH(2) processes
with

σ 2
t,A = 1 + αAϵ2

t−1,A + α′

Aϵ2
t−2,A and σ 2

t,B = 1 + αBϵ2
t−1,B + α′

Bϵ2
t−2,B .

Tables 3–5 show type I error and power values for this scenario when testing (1).
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αB αA = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 5.64 18.59 58.84 89.78 96.82 94.64 90.74 84.74
0.45 95.23 79.93 38.93 8.18 7.52 30.93 57.73 70.07
0.8 85.73 84.12 82.53 77.31 60.12 29.83 9.01 2.84

Table 5. Percentage power with α′

A = α′

B = 0.1 and stated values of αA and αB .

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5.29 5.65 5.25 5.66 5.47 5.76 6.09 9.41 63.8

Table 6. Percentage type I error with βA = βB = k.

βB βA = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5.41 41.74 95.82 100 100 100 100 100 99.98
0.5 100 100 99.92 78.05 5.53 91.39 100 100 99.99
0.9 99.97 99.99 99.97 99.98 100 99.98 99.99 99.98 63.62

Table 7. Percentage power with stated values of βA and βB .

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5.84 4.98 5.46 5.56 5.96 5.19 6.03 9.19

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5.17 5.65 5.80 5.54 5.41 5.54 5.59 5.84

Table 8. Percentage type I error with αA = αB = 0.1 and βA = βB = k (top),
and βA = βB = 0.1 and αA = αB = k (bottom).

GARCH(0, 1). Let {ϵt,A} and {ϵt,B} be independent, stationary GARCH(0, 1)

processes with

σ 2
t,A = 1 + βAσ 2

t−1,A and σ 2
t,B = 1 + βBσ 2

t−1,B .

Tables 6–7 show type I error and power values for this scenario when testing (1).

GARCH(1, 1). Let {ϵt,A} and {ϵt,B} be independent, stationary GARCH(1, 1)

processes with
σ 2

t,A = 1 + αAϵ2
t−1,A + βAσ 2

t−1,A,

σ 2
t,B = 1 + αBϵ2

t−1,B + βBσ 2
t−1,B .

Tables 8–9 show type I error and power values for this scenario when testing (1).
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βB βA = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 5.51 41.71 96.01 99.98 100 100 100 100
0.45 100 100 94.79 26.16 30.32 99.67 100 100
0.8 100 100 100 100 100 100 99.99 9.28

αB αA = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 5.75 5.35 5.42 5.55 6.03 5.35 5.63 5.59
0.45 98.11 98.20 98.47 98.34 98.02 98.00 98.52 98.26
0.8 86.13 86.47 86.04 86.45 86.47 86.80 86.74 86.13

Table 9. Percentage power with αA = αB = 0.1 and stated values of βA and
βB (top), and with βA = βB = 0.1 and stated values of αA and αB (bottom).

Conclusions. For an ARCH(1) process, the error hovers around 5% as long as
k < 0.5. The closer k gets to 1, however, the more the error shrinks. The power
increases as the distance between αA and αB increases but experiences a dampening
effect when at least one of these parameters is close to 1.

For an ARCH(2) process with αA = αB = 0.1 and α′

A = α′

B = k, the error
hovers around 5% as long as k < 0.4. The closer k gets to 1, however, the more
the error shrinks. When α′

A = α′

B = 0.1 and αA = αB = k, the error again hovers
around 5% provided that k < 0.4. When k approaches 1, the error shrinks even
more precipitously than in the previous case.

When αA =αB =0.1 and α′

B ∈{0.1, 0.45, 0.8}, the power increases as the distance
between αA and αB increases but experiences a dampening effect when α′

A > 0.5.
When α′

A = α′

B = 0.1 and αB ∈ {0.1, 0.45, 0.8}, the power increases as the distance
between αA and αB increases but experiences a dampening effect when αA > 0.5.

For a GARCH(0, 1) process, the error hovers around 5% as long as k < 0.7. The
closer k gets to 1, however, the more the error blows up. The power values increase
as the distance between αA and αB increases but are almost certainly inflated when
0.6 < βA < 0.9. When βA = 0.9, another dampening effect occurs, especially when
βB = 0.9.

For a GARCH(1, 1) process with αA = αB = 0.1 and βA = βB = k, the error
hovers around 5% as long as k < 0.7. As k gets closer to 1, however, the error
begins to rise. When βA = βB = 0.1 and αA = αB = k, the error hovers around 5%
for all k ∈ {0.1, 0.2, . . . , 0.8}.

When αA = αB = 0.1 and βB ∈ {0.1, 0.45, 0.8}, the power increases as the
distance between βA and βB increases, but these values are most likely inflated
when βA > 0.6. When βA = βB = 0.1, the power values behave poorly. Specifically,
for all αA ∈ {0.1, 0.2, . . . , 0.8}, the power hovers around 5% for αB = 0.1, around
98% for αB = 0.45, and around 86% for αB = 0.8.
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4. Applications

According to Wikipedia, a cryptocurrency is “a digital currency designed to work
as a medium of exchange through a computer network that is not reliant on any
central authority, such as a government or bank, to uphold or maintain it. It is a
decentralized system for verifying that the parties to a transaction have the money
they claim to have, eliminating the need for traditional intermediaries, such as
banks, when funds are being transferred between two entities”. Unlike traditional
currencies, cryptocurrencies are traded 365 days a year.

There has been a growing body of literature in recent years that explores the
modeling of daily returns from cryptocurrencies. The authors of [Chu et al. 2017]
were among the first to describe the modeling of returns from several leading
cryptocurrencies using various GARCH-type models. Gkillias and Katsiampa
[2018] employed extreme value theory to study the tail behavior of returns in
an effort to better understand why cryptocurrencies are more volatile than fiat
currencies. Caporale and Zekokh [2019] revealed that standard GARCH models
tend to yield incorrect value-at-risk (VaR) predictions and put forward remedies that
better accommodate regime changes. The authors of [Cerqueti et al. 2020] revealed
that certain skewed GARCH volatility models outperform more traditional Gaussian
models when forecasting the market capitalization of certain cryptocurrencies.

Figure 2 shows the daily adjusted closing prices (in USD) for Dogecoin (DOGE),
Cardano (ADA), Tron (TRX), and Hex (HEX) from January 1, 2020 to December 31,
2021 (n = 731). Changepoints seemingly occur around the turn of the year, making
2021 much more volatile than 2020. Part of the explanation for this shift is that
the shutting down of the U.S. economy in 2020 due to COVID-19 stirred up fears
of inflationary pressure on the U.S. dollar, thus making cryptocurrencies more
attractive to certain investors.

The four aforementioned cryptocurrencies are examples of what are called penny
cryptocurrencies. Like penny stocks, penny cryptocurrencies trade for less than
one USD per share. This section is concerned with using arc length to compare
the CV structures of the daily returns among these four penny cryptocurrencies,
treating 2020 and 2021 separately.

2020. Figure 3 shows the daily returns for our four chosen cryptocurrencies from
January 1, 2020 to December 31, 2020 (n = 366). Table 10 shows the test statistic
values when testing (1) pairwise among these returns. If α = 0.05, then the
Bonferroni-corrected (threshold) critical value is z(α/6)/2 = z.0041 ≈ 2.636, in
which case we fail to reject H0 for all six tests. If α = 0.10, then the Bonferroni-
corrected (threshold) critical value is z(α/6)/2 = z0.0083 ≈ 2.394, in which case we
reject H0 for the tests involving Dogecoin vs. Cardano, Cardano vs. Tron, and
Cardano vs. Hex.
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Figure 2. Daily adjusted closing prices (in USD) for Dogecoin (DOGE),
Cardano (ADA), Tron (TRX), and Hex (HEX) from January 1, 2020 to
December 31, 2021 (n = 731).
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Figure 3. Daily returns for Dogecoin (DOGE), Cardano (ADA), Tron
(TRX), and Hex (HEX) from January 1, 2020 to December 31, 2020
(n = 366).

DOGE ADA TRX HEX

DOGE − −2.564 −1.898 −1.311
ADA 2.564 − 2.556 2.563
TRX 1.898 −2.556 − 1.676
HEX 1.311 −2.563 −1.676 −

Table 10. Test statistic values when testing (1) pairwise among the 2020
daily returns for Dogecoin (DOGE), Cardano (ADA), Tron (TRX), and
Hex (HEX).
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Figure 4. Daily returns for Dogecoin (DOGE), Cardano (ADA), Tron
(TRX), and Hex (HEX) from January 1, 2021 to December 31, 2021
(n = 365).

DOGE ADA TRX HEX

DOGE − −2.082 1.775 1.679
ADA 2.082 − 2.105 2.104
TRX −1.775 −2.105 − −2.464
HEX −1.679 −2.104 2.464 −

Table 11. Test statistic values when testing (1) pairwise among the 2021
daily returns for Dogecoin (DOGE), Cardano (ADA), Tron (TRX), and
Hex (HEX).

2021. Figure 4 shows the daily returns for our four chosen cryptocurrencies from
January 1, 2021 to December 31, 2021 (n = 365). Table 11 shows the test statistic
values when testing (1) pairwise among these returns. If α = 0.05, then the
Bonferroni-corrected (threshold) critical value is

z(α/6)/2 = z0.0041 ≈ 2.636,

in which case we fail to reject H0 for all six tests. If α = 0.10, then the Bonferroni-
corrected (threshold) critical value is

z(α/6)/2 = z0.0083 ≈ 2.394,

in which case we reject H0 for the test involving Tron vs. Hex.

Appendix A: ARCH proofs

If {ϵt } ∼ ARCH(p), then

E(ϵt) = E(σt Z t) = E(σt)E(Z t) = 0
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and

Cov(ϵ2
t , ϵ2

t+h) = E(ϵ2
t ϵ2

t+h) − E(ϵ2
t )E(ϵ2

t+h)

= E(σ 2
t Z2

t σ
2
t+h Z2

t+h) − E(σ 2
t Z2

t )E(σ 2
t+h Z2

t+h)

= E(σ 2
t σ 2

t+h)E(Z2
t )E(Z2

t+h) − E(σ 2
t )E(σ 2

t+h)E(Z2
t )E(Z2

t+h)

= E(σ 2
t σ 2

t+h) − E(σ 2
t )E(σ 2

t+h)

= Cov(σ 2
t , σ 2

t+h).

If Et = σ(ϵt , ϵt−1, . . . ), then

Var(ϵt |Et−1) = E(ϵ2
t |Et−1) = E(σ 2

t Z2
t |Et−1)

= σ 2
t E(Z2

t |Et−1) = σ 2
t E(Z2

t ) = σ 2
t .

If h ̸= 0, then

Cov(ϵt , ϵt+h) = E(ϵtϵt+h) − E(ϵt)E(ϵt+h)

= E(ϵtϵt+h) = E(σt Z tσt+h Z t+h)

= E(σtσt+h)E(Z t)E(Z t+h) = 0.

If h = 0, then

Cov(ϵt , ϵt+h) = Var(ϵt) = E(ϵ2
t ) = E(σ 2

t )

= E

(
α0 +

p∑
i=1

αiϵ
2
t−i

)
= α0 +

p∑
i=1

αi E(ϵ2
t−i ).

A weakly stationary solution (i.e., E(ϵ2
s ) = E(ϵ2

t ) for all s, t ∈ Z) for this equation
is given by

Var(ϵt) =
α0

1 −
∑p

i=1 αi
,

provided that
∑p

i=1 αi < 1.

Appendix B: GARCH proofs

If {ϵt } ∼ GARCH(p, q), then

E(ϵt) = 0 and Cov(ϵ2
t , ϵ2

t+h) = Cov(σ 2
t σ 2

t+h)

for the same reasons as shown in Appendix A. If Ft = σ(ϵt , σt , ϵt−1, σt−1, . . . ),
then

Var(ϵt |Ft−1) = E(ϵ2
t |Ft−1) = E(σ 2

t Z2
t |Ft−1)

= σ 2
t E(Z2

t |Ft−1) = σ 2
t E(Z2

t ) = σ 2
t .
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If h ̸= 0, then Cov(ϵt , ϵt+h) = 0 for the same reasons as shown in Appendix A. If
h = 0, then

Cov(ϵt , ϵt+h) = Var(ϵt) = E(ϵ2
t ) = E(σ 2

t )

= E

(
α0 +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

β jσ
2
t− j

)

= α0 +

p∑
i=1

αi E(ϵ2
t−i ) +

q∑
j=1

β j E(σ 2
t− j )

= α0 +

p∑
i=1

αi E(ϵ2
t−i ) +

q∑
j=1

β j E(ϵ2
t− j ).

A weakly stationary solution (i.e., E(ϵ2
s ) = E(ϵ2

t ) for all s, t ∈ Z) for this equation
is given by

Var(ϵt) =
α0

1 −
∑p

i=1 αi −
∑q

j=1 β j
,

provided that
∑p

i=1 αi +
∑q

j=1 β j < 1.

Appendix C: Invertibility

Recall that an autoregressive moving average (ARMA) process {At } is invertible if
there exist absolutely summable values π0, π1, π2, . . . such that

white noise at time t =

∞∑
j=0

π j At− j .

The autocovariance function (ACVF) for an invertible ARMA process uniquely
identifies the model parameters.

For example, if {At } ∼ MA(1), then

At = Z t + θ Z t−1, {Z t } ∼ WN(0, σ 2),

with ACVF given by

γA(h) =


(θ2

+ 1)σ 2, h = 0,

θσ 2, h = ±1,

0, otherwise.

Note that if θ = 2 with σ 2
= 0.2 or if θ = 0.5 with σ 2

= 0.8, then

γA(h) =


1, h = 0,

0.4, h = ±1,

0, otherwise.
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With the invertibility requirement of |θ | < 1, however, the scenario with θ = 2 gets
tossed out, in which case the ACVF now uniquely identifies the MA(1) parameters.

It can be shown that if {ϵt } ∼ GARCH(p, q), then {ϵ2
t } ∼ ARMA(m, q), where

m = max(p, q). Thus, for this paper, we tacitly assume ARMA invertibility so that
the null hypothesis in (1) is unambiguous.
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